Different types of Stainless Steel

Joined
May 18, 2010
Messages
1,057
Please educate me on the types of SS used in knife making. As an ex-boat builder, I am used to using 304L and 316L SS. The 304L is cheaper and not as corrosion resistant. The 316L is stronger and more corrosion resistant.

I see knife makers using 416 and 430 SS in san mia blades. What is the difference in the stainless steels? Thanks.

Tim
 
300 Series—austenitic chromium-nickel alloys

Type 301—highly ductile, for formed products. Also hardens rapidly during mechanical working. Good weldability. Better wear resistance and fatigue strength than 304.
Type 302—same corrosion resistance as 304, with slightly higher strength due to additional carbon.
Type 303—free machining version of 304 via addition of sulfur and phosphorus. Also referred to as "A1" in accordance with ISO 3506.[6]
Type 304—the most common grade; the classic 18/8 stainless steel. Outside of the US it is commonly known as "A2 stainless steel", in accordance with ISO 3506 (not to be confused with A2 tool steel).[6]
Type 304L—same as the 304 grade but lower carbon content to increase weldability. Is slightly weaker than 304.
Type 304LN—same as 304L, but also nitrogen is added to obtain a much higher yield and tensile strength than 304L.
Type 308—used as the filler metal when welding 304.
Type 309—better temperature resistance than 304, also sometimes used as filler metal when welding dissimilar steels, along with inconel.
Type 316—the second most common grade (after 304); for food and surgical stainless steel uses; alloy addition of molybdenum prevents specific forms of corrosion. It is also known as marine grade stainless steel due to its increased resistance to chloride corrosion compared to type 304. 316 is often used for building nuclear reprocessing plants. 316L is an extra low carbon grade of 316, generally used in stainless steel watches and marine applications, as well exclusively in the fabrication of reactor pressure vessels for boiling water reactors, due to its high resistance to corrosion. Also referred to as "A4" in accordance with ISO 3506.[6] 316Ti includes titanium for heat resistance, therefore it is used in flexible chimney liners.
Type 321—similar to 304 but lower risk of weld decay due to addition of titanium. See also 347 with addition of niobium for desensitization during welding.

400 Series—ferritic and martensitic chromium alloys

Type 405—ferritic for welding applications
Type 408—heat-resistant; poor corrosion resistance; 11% chromium, 8% nickel.
Type 409—cheapest type; used for automobile exhausts; ferritic (iron/chromium only).
Type 410—martensitic (high-strength iron/chromium). Wear-resistant, but less corrosion-resistant.
Type 416—easy to machine due to additional sulfur
Type 420—Cutlery Grade martensitic; similar to the Brearley's original rustless steel. Excellent polishability.
Type 430—decorative, e.g., for automotive trim; ferritic. Good formability, but with reduced temperature and corrosion resistance.
Type 439—ferritic grade, a higher grade version of 409 used for catalytic converter exhaust sections. Increased chromium for improved high temperature corrosion/oxidation resistance.
Type 440—a higher grade of cutlery steel, with more carbon, allowing for much better edge retention when properly heat-treated. It can be hardened to approximately Rockwell 58 hardness, making it one of the hardest stainless steels. Due to its toughness and relatively low cost, most display-only and replica swords or knives are made of 440 stainless. Available in four grades: 440A, 440B, 440Carbon, and the uncommon 440F (free machinable). 440A, having the least amount of carbon in it, is the most stain-resistant; 440C, having the most, is the strongest and is usually considered more desirable in knifemaking than 440A[citation needed], except for diving or other salt-water applications.
Type 446—For elevated temperature service
 
Back
Top